Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Naunyn Schmiedebergs Arch Pharmacol ; 397(2): 703-724, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37615709

RESUMO

The main objective of this review is to highlight the therapeutic potential of allicin, a defense molecule in garlic known for its diverse health benefits, and address the key challenges of its bioavailability and stability. The research further aims to evaluate various formulation strategies and nanotechnology-based delivery systems that can resolve these issues and improve allicin's clinical efficacy, especially in cancer therapy. We conducted a comprehensive review of the available literature and previous studies, focusing on the therapeutic properties of allicin, its bioavailability, stability issues, and novel formulation strategies. We assessed the mechanism of action of allicin in cancer, including its effects on signaling pathways, cell cycle, apoptosis, autophagy, and tumor development. We also evaluated the outcomes of both in vitro and in vivo studies on different types of cancers, such as breast, cervical, colon, lung, and gastric cancer. Despite allicin's significant therapeutic benefits, including cardiovascular, antihypertensive, cholesterol-lowering, antimicrobial, antifungal, anticancer, and immune-modulatory activity, its clinical utility is limited due to poor stability and unpredictable bioavailability. Allicin's bioavailability in the gastrointestinal tract is dependent on the activity of the enzyme alliinase, and its stability can be affected by various conditions like gastric acid and intestinal enzyme proteases. Recent advances in formulation strategies and nanotechnology-based drug delivery systems show promise in addressing these challenges, potentially improving allicin's solubility, stability, and bioavailability. Allicin offers substantial potential for cancer therapy, yet its application is hindered by its instability and poor bioavailability. Novel formulation strategies and nanotechnology-based delivery systems can significantly overcome these limitations, enhancing the therapeutic efficacy of allicin. Future research should focus on refining these formulation strategies and delivery systems, ensuring the safety and efficacy of these new allicin formulations. Clinical trials and long-term studies should be carried out to determine the optimal dosage, assess potential side effects, and evaluate their real-world applicability. The comparative analysis of different drug delivery approaches and the development of targeted delivery systems can also provide further insight into enhancing the therapeutic potential of allicin.


Assuntos
Dissulfetos , Neoplasias , Humanos , Disponibilidade Biológica , Ácidos Sulfínicos/uso terapêutico , Ácidos Sulfínicos/metabolismo , Ácidos Sulfínicos/farmacologia , Resultado do Tratamento , Neoplasias/tratamento farmacológico
2.
Environ Sci Pollut Res Int ; 30(20): 57219-57235, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37010687

RESUMO

Apoptosis, often known as programmed cell death is a mechanism used by numerous species to maintain tissue homeostasis. The process leading to cell death is complicated because it requires the stimulation of caspases. According to several studies, nanowires have important medical benefits, can kill cells by adhering to cancer cells, destroying them, and killing the entire cell using a triple attack that integrates vibration, heat, and drug delivery to trigger apoptosis. The sewage effluents and industrial, fertilizer and organic wastes decomposition can produce elevated levels of chemicals in the environment which may interrupt the cell cycle and activate apoptosis. The purpose of this review is to give a thorough summary of the evidence that is currently available on apoptosis. Current review discussed topics like the morphological and biochemical alterations that occur during apoptosis, as well as the various mechanisms that cause cell death, including the intrinsic (or mitochondrial), extrinsic (or death receptor), and intrinsic endoplasmic reticulum pathway. The apoptosis reduction in cancer development is mediated by (i) an imbalance between pro- and anti-apoptotic proteins, such as members of the B-cell lymphoma-2 (BCL2) family of proteins, tumour protein 53 and inhibitor of apoptosis proteins, (ii) a reduction in caspase activity, and (iii) impaired death receptor signalling. This review does an excellent task of outlining the function of nanowires in both apoptosis induction and targeted drug delivery for cancer cells. A comprehensive summary of the relevance of nanowires synthesised for the purpose of inducing apoptosis in cancer cells has been compiled collectively.


Assuntos
Nanofios , Neoplasias , Humanos , Apoptose/fisiologia , Caspases/metabolismo , Morte Celular , Fenômenos Magnéticos , Receptores de Morte Celular
3.
Environ Sci Pollut Res Int ; 30(4): 9164-9183, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36454526

RESUMO

COVID-19 disease has been identified to cause remarkable increase of mucormycosis infection cases in India, with the majority of cases being observed in individuals recovering from COVID-19. Mucormycosis has emanated as an outcome of the recent COVID-19 pandemic outbreak as rapidly developing fatal illness which was acquired by Mucorales fungus which is a subcategory of molds known as mucormycetes. Mucormycosis is one of the serious, sporadic mycotic illnesses which is a great threat to immunocompromised COVID-19 patients and affects people of all ages, including children with COVID-19 infections. This is associated with tissue damaging property and, therefore, causes serious clinical complications and elevated death rate. The COVID-19-associated mucormycosis or "black fungus" are the terms used interchangeably. The rapid growth of tissue necrosis presenting as "rhino-orbital-cerebral, pulmonary, cutaneous, gastrointestinal, and disseminated disease" are various clinical forms of mucormycosis. The patient's prognosis and survival can be improved with proper surgeries using an endoscopic approach for local tissue protection in conjunction with course of appropriate conventional antifungal drug like Amphotericin-B and novel drugs like Rezafungin, encochleated Amphotericin B, Orolofim, and SCY-078 which have been explored in last few years. This review provides an overview of mucormycosis including its epidemiology, pathophysiology, risk factors, its clinical forms, and therapeutic approaches for disease management like antifungal therapy, surgical debridement, and iron chelators. The published patents and ongoing clinical trials related to mucormycosis have also been mentioned in this review.


Assuntos
COVID-19 , Mucormicose , Criança , Humanos , Mucormicose/epidemiologia , Mucormicose/tratamento farmacológico , Mucormicose/microbiologia , Antifúngicos , Pandemias , COVID-19/epidemiologia , Anfotericina B/toxicidade , Anfotericina B/uso terapêutico
4.
Curr Pharm Des ; 28(40): 3269-3288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36200206

RESUMO

HYPOTHESIS: This review article represents a brief layout of the risk factors and pathophysiology responsible for obesity, customary treatment strategies, and nanotechnology-based nutraceutical for the therapeutics of obesity. EXPERIMENTS: An exhaustive search of the literature was done for this purpose, using Google Scholar, PubMed, and ScienceDirect databases. A literature study was conducted using publications published in peer-reviewed journals between 2000 and 2022. FINDINGS: This was revealed that risk factors responsible for obesity were genetic abnormalities and environmental and socio-economic factors. Several research articles published between 2000 and 2022 were based on phytoconstituents-based nanoformulation for obesity therapeutics and, therefore, have been systematically compiled in this review. Various nutraceuticals like Garcinia cambogia, quercetin, resveratrol, capsaicin, Capsicum, Curcuma longa, Camella Sinensis, Zingiber officinalis, Citrus aurantium, Aegle marmelos, Coffea canephora, Asparagus officinalis, Gardenia jasminoides, Catha edulis, Clusia nemroisa, Rosmarinus officinalis, Cirsium setidens, Betula platyphylla, Tripterygium wilfordi possessing anti-obesity actions are discussed in this review along with their patents, clinical trials as well as their nanoformulation available. CONCLUSION: This review illustrates that nanotechnology has a great propensity to impart a promising role in delivering phytochemicals and nutraceuticals in managing obesity conditions and other related disorders.


Assuntos
Citrus , Suplementos Nutricionais , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Obesidade/tratamento farmacológico , Nanotecnologia
5.
Environ Sci Pollut Res Int ; 29(49): 73809-73827, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36100788

RESUMO

Neurodegeneration is the loss of neuronal capacity and structure over time which causes neurodegenerative disorders like Alzheimer, amyotrophic lateral sclerosis, Parkinson, and Huntington's disease (HD). This review is primarily concerned with HD, which was fully described by George Huntington in 1872. In developed countries, HD has become another common single-gene neurological disorder. Because of its autosomal dominant inheritance, the sickness affects both individuals and their families. Huntington disease has been recognized as a disorder that affects the complete body and brain in which the mutant huntingtin polyglutamine (polyQ) sequence is extensively increased and gets correlated to CAG trinucleotide which codes for glutamine (Q). These proteins have characteristics that produce apoptosis and dysfunction. HD is a lethal condition which needs an immediate diagnosis and treatment, and therefore, nanoparticle has come into sight out as opportunistic strategies for treatment of HD. Nanostructures have great potential to cross the blood brain barrier and also prevent breakdown of active molecule and reduces the drug toxicity. This review explains the distinguishing symptoms, genetics, and stages during the development of Huntington's disease, and also provides an overview of HD with an emphasis on its epidemiology, pathogenesis, and management. This review focuses on the latest studies on nanotechnology-related technologies, i.e., magnetic nanoparticle, solid lipid nanoparticle, and polymeric nanoparticle for Huntington's disease treatment. The pioneering patents and in-progress clinical trials related to Huntington's disease has also been summarized in this review.


Assuntos
Doença de Huntington , Glutamina , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Lipossomos , Nanopartículas , Nanotecnologia
6.
Environ Sci Pollut Res Int ; 29(51): 76514-76531, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36161571

RESUMO

Hyperlipidemia is the primary cause of heart disorders and has been manifested as the condition with remarkable higher levels of very-low-density lipoproteins, low-density lipoproteins, intermediate-density lipoprotein, triglycerides, and cholesterol in blood circulation. Genetic causes or systemic metabolic illnesses like diabetes mellitus, increased alcohol consumption, hypothyroidism, and primary biliary cirrhosis are several reasons behind development of hyperlipidemia. Higher levels of lipids and lipoproteins in plasma are responsible for various health disorders in human body like occlusion of blood vessels, acute pancreatitis, and reduced artery lumen elasticity. Both primary and secondary prophylaxis of heart disease can be achieved through combination of pharmacologic therapy with therapeutic lifestyle adjustments. Statins which belongs to HMG-CoA reductase inhibitors are preferred for primary prevention of hyperlipidemia particularly for individuals at higher risk of development of heart disease. This review discusses the recent advancements and outcomes of nanoparticle drug carriers for statins in the therapy of hyperlipidemia.


Assuntos
Cardiopatias , Inibidores de Hidroximetilglutaril-CoA Redutases , Hiperlipidemias , Pancreatite , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Doença Aguda , Lipoproteínas IDL , Pancreatite/tratamento farmacológico , Triglicerídeos , Colesterol , Lipoproteínas VLDL/metabolismo , Lipoproteínas , Portadores de Fármacos
7.
Molecules ; 27(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35744831

RESUMO

Traditionally, herbal compounds have been the focus of scientific interest for the last several centuries, and continuous research into their medicinal potential is underway. Berberine (BBR) is an isoquinoline alkaloid extracted from plants that possess a broad array of medicinal properties, including anti-diarrheal, anti-fibrotic, antidiabetic, anti-inflammatory, anti-obesity, antihyperlipidemic, antihypertensive, antiarrhythmic, antidepressant, and anxiolytic effects, and is frequently utilized as a traditional Chinese medicine. BBR promotes metabolisms of glucose and lipids by activating adenosine monophosphate-activated protein kinase, stimulating glycolysis and inhibiting functions of mitochondria; all of these ameliorate type 2 diabetes mellitus. BBR has also been shown to have benefits in congestive heart failure, hypercholesterolemia, atherosclerosis, non-alcoholic fatty liver disease, Alzheimer's disease, and polycystic ovary syndrome. BBR has been investigated as an interesting pharmacophore with the potential to contribute significantly to the research and development of novel therapeutic medicines for a variety of disorders. Despite its enormous therapeutic promise, the clinical application of this alkaloid was severely limited because of its unpleasant pharmacokinetic characteristics. Poor bioavailability, limited absorption, and poor water solubility are some of the obstacles that restricted its use. Nanotechnology has been suggested as a possible solution to these problems. The present review aims at recent updates on important therapeutic activities of BBR and different types of nanocarriers used for the delivery of BBR in different diseases.


Assuntos
Alcaloides , Berberina , Diabetes Mellitus Tipo 2 , Anti-Inflamatórios , Berberina/farmacocinética , Berberina/uso terapêutico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Humanos , Nanotecnologia , Preparações Farmacêuticas
8.
Environ Sci Pollut Res Int ; 29(22): 32605-32630, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35195869

RESUMO

Atopic dermatitis is a chronic as well as widespread skin disease which has significant influence on the life attributes of affected people and their families. Systemic immunosuppressive drugs can be utilised for effective care of disease, although they are often prescribed for rigorous disruption or disease that is complicated to manage. Therefore, topical applications of corticosteroids are considered the primary pharmacologic therapies for atopic dermatitis, and research recommends that these medications might be helpful in preventing disease flare-ups. However, topical medicine administration to deeper layers of skin is challenging because of the skin anatomic barrier that restricts deeper drug permeation, and also due to barrier function abnormalities in atopic dermatitis skin, which might result in systemic drug absorption, provoking systemic consequences. Hence, effective management of atopic dermatitis needs new, effective, safe and targeted treatments. Therefore, nanotechnology-based topical therapeutics have attracted much interest nowadays because of their tendency to increase drug diffusion and bioavailability along with enormous drug targeting potential to affected cells, and, thereby, reducing the adverse effects of medications. In this review, we mention different symptoms of atopic dermatitis, and provide an overview of the different triggering factors causing atopic dermatitis, with emphasis on its epidemiology, pathophysiology, clinical features and diagnostic, and preventive measures. This review discusses existing therapeutics for treating atopic dermatitis, and the newer approaches as well as the current classical pharmacotherapy of atopic dermatitis against new nanoparticle skin delivery systems. This review has also briefly summarised the recent patents and clinical status of therapeutic modalities for atopic dermatitis.


Assuntos
Dermatite Atópica , Administração Tópica , Dermatite Atópica/diagnóstico , Dermatite Atópica/tratamento farmacológico , Humanos , Imunossupressores , Nanotecnologia , Pele
9.
Molecules ; 28(1)2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36615414

RESUMO

The abundant synthesis and accretion of melanin inside skin can be caused by activation of melanogenic enzymes or increase in number of melanocytes. Melasma is defined as hyperpigmented bright or dark brown spots which are symmetrically distributed and have serrated and irregular borders. The three general categories of pigmentation pattern include centro facial pattern, malar pattern, and mandibular pattern. Exposure to UV rays, heat, use of cosmetics and photosensitizing drugs, female sex hormonal therapies, aberrant production of melanocyte stimulating hormone, and increasing aesthetic demands are factors which cause the development of melasma disease. This review gives a brief overview regarding the Fitzpatrick skin phototype classification system, life cycle of melanin, mechanism of action of anti-hyperpigmenting drugs, and existing pharmacotherapy strategies for the treatment of melasma. The objectives of this review are focused on role of cutting-edge nanotechnology-based strategies, such as lipid-based nanocarriers, i.e., lipid nanoparticles, microemulsions, nanoemulsions, liposomes, ethosomes, niosomes, transfersomes, aspasomes, invasomes penetration-enhancing vesicles; inorganic nanocarriers, i.e., gold nanoparticles and fullerenes; and polymer-based nanocarriers i.e., polymeric nanoparticles, polymerosomes, and polymeric micelles for the management of hyperpigmentation.


Assuntos
Hiperpigmentação , Melanose , Nanopartículas Metálicas , Feminino , Humanos , Melaninas , Ouro/uso terapêutico , Hiperpigmentação/tratamento farmacológico , Melanócitos , Melanose/tratamento farmacológico , Polímeros/uso terapêutico , Nanotecnologia
10.
Environ Sci Pollut Res Int ; 29(3): 3302-3322, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34755300

RESUMO

Diabetes mellitus is a severe condition in which the pancreas produces inadequate insulin or the insulin generated is ineffective for utilisation by the body; as a result, insulin therapy is required for control blood sugar levels in patients having type 1 diabetes and is widely recommended in advanced type 2 diabetes patients with uncontrolled diabetes despite dual oral therapy, while subcutaneous insulin administration using hypodermic injection or pump-mediated infusion is the traditional route of insulin delivery and causes discomfort, needle phobia, reduced adherence, and risk of infection. Therefore, transdermal insulin delivery has been extensively explored as an appealing alternative to subcutaneous approaches for diabetes management which not only is non-invasive and easy, but also avoids first-pass metabolism and prevents gastrointestinal degradation. Microneedles have been commonly investigated in human subjects for transdermal insulin administration because they are minimally invasive and painless. The different types of microneedles developed for the transdermal delivery of anti-diabetic drugs are discussed in this review, including solid, dissolving, hydrogel, coated, and hollow microneedles. Numerous microneedle products have entered the market in recent years. But, before the microneedles can be effectively launched into the market, a significant amount of investigation is required to address the numerous challenges. In conclusion, the use of microneedles in the transdermal system is an area worth investigating because of its significant benefits over the oral route in the delivery of anti-diabetic medications and biosensing of blood sugar levels to assure improved clinical outcomes in diabetes management.


Assuntos
Diabetes Mellitus Tipo 2 , Administração Cutânea , Diabetes Mellitus Tipo 2/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Humanos , Insulina , Agulhas
11.
Environ Sci Pollut Res Int ; 28(43): 60459-60476, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34545518

RESUMO

Meningitis is an inflammation of the protective membranes called meninges and fluid adjacent the brain and spinal cord. The inflammatory progression expands all through subarachnoid space of the brain and spinal cord and occupies the ventricles. The pathogens like bacteria, fungi, viruses, or parasites are main sources of infection causing meningitis. Bacterial meningitis is a life-threatening health problem that which needs instantaneous apprehension and treatment. Nesseria meningitidis, Streptococcus pneumoniae, and Haemophilus flu are major widespread factors causing bacterial meningitis. The conventional drug delivery approaches encounter difficulty in crossing this blood-brain barrier (BBB) and therefore are insufficient to elicit the desired pharmacological effect as required for treatment of meningitis. Therefore, application of nanoparticle-based drug delivery systems has become imperative for successful dealing with this deadly disease. The nanoparticles have ability to across BBB via four important transport mechanisms, i.e., paracellular transport, transcellular (transcytosis), endocytosis (adsorptive transcytosis), and receptor-mediated transcytosis. In this review, we reminisce distinctive symptoms of meningitis, and provide an overview of various types of bacterial meningitis, with a focus on its epidemiology, pathogenesis, and pathophysiology. This review describes conventional therapeutic approaches for treatment of meningitis and the problems encountered by them while transmitting across tight junctions of BBB. The nanotechnology approaches like functionalized polymeric nanoparticles, solid lipid nanoparticles, nanostructured lipid carrier, nanoemulsion, liposomes, transferosomes, and carbon nanotubes which have been recently evaluated for treatment or detection of bacterial meningitis have been focused. This review has also briefly summarized the recent patents and clinical status of therapeutic modalities for meningitis.


Assuntos
Meningites Bacterianas , Nanopartículas , Nanotubos de Carbono , Barreira Hematoencefálica , Humanos , Meningites Bacterianas/tratamento farmacológico , Transcitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...